点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:家彩网 - 家彩网
首页>文化频道>要闻>正文

家彩网 - 家彩网

来源:家彩网2024-01-19 17:48

  

家彩网

(新春走基层)24年春运里的坚守:以小家“咫尺天涯”换万家团圆******

  中新网温州1月18日电(黄慧 范凡)又是一年春运时。近些天,人潮涌动中,不计其数的游子带着对家乡浓浓的思念,踏上归家的旅途。但对浙江温州站客运值班员王燕波而言,为了守护万家团圆,她与“近在咫尺”的家却是“远隔天涯”。

  今年春运是王燕波加入浙江交通集团金温铁道公司后的第24个春运。作为土生土长的温州人,过去的24年春运期间,她一年不落地坚守在岗位上。

  回忆这些年的春运历程,其中包含万般滋味,有为候车早产孕妇接生的紧急,有在寒潮来袭时通宵值守维持秩序的艰辛……多次考验之下,王燕波也逐渐成长为一名业务精通、细致周全的春运守护人。

  “列车马上就要检票了,请旅客们排好队。持儿童票、临时身份证的,请走人工通道……”1月17日6时30分,温州站检票口传来王燕波熟悉却又略带沙哑的声音。随着返乡客流高峰到来,她都会在车票开检前5分钟,穿梭在排队的人群里,提醒检票注意事项,确保大客流能快速进站上车。

  作为客运值班员,她的主要工作就是负责班组工作安排、旅客候车引导、处置突发情况等。多年的春运经历,让她不仅能顺利化解一切“疑难杂症”,在工作中还总是多想一步、多走一步、多说一句,做旅客“暖心人”。

  6时55分,候车厅准时响起K2906次列车的停检广播,乘坐K944次列车的旅客们立马蜂拥而上,将应急检票通道堵得水泄不通。“2906还有一个!还有一个!”这时,对讲机传来安检口的呼叫。

  “大家请让一让,把应急验票通道让出来!”“行李往边上挪一挪!”王燕波立即开始清理应急通道,确保晚到的旅客能顺利上车。“早上这两趟车是接连检票,而且K944次客流比较大,K2906次停检这一会,应急通道就会被K944次的大客流堵住,所以通道清理很重要,每一秒都是关键。”

  王燕波说,“春运如同‘赛场’,需要争分夺秒地守护好旅客出行之路。”在她口袋常装的小本子上,记录着每天开行的车次和人数,重点标注出大客流列车,根据客流灵活调整开检时间。除了类似K2906次、K944次列车需要短时间内组织大客流上车外,她还用贴心服务温暖着旅客出行。

  某一次,王燕波接到一名年迈老人的求助,老人独自返乡,买不到铺位,她迅速联系列车长,并送老人上车,为老人办理补票手续。由于老人携带现金不够,使用的又是老年机,她毫不犹豫地垫付了补票费用。

  春运期间,王燕波总会“扎”进候车室,举起喇叭,提醒旅客正在检票的车次和做好防疫措施。工作空档,她也会拿着喇叭去广场引导,提前组织旅客进站上车,缓解高峰压力。一天下来,她平均行走超两万步,说上千句话。

  王燕波还有着另一个身份——温州站客运党支部委员。同事们都习惯称呼她为“波姐”,因为她就像知心姐姐那般温暖着身边的每一个人。

  “波姐,挺不好意思的,现在春运大客流,但我父亲肺炎住院,老婆也感染了,小孩没人照顾,我能不能申请年休?”刚升级当爸爸的客运员兰福熠纠结了很久,还是拨通了王燕波的电话,语气中尽是无奈。

  “你放心照顾家里,工作的事,别担心。”挂上电话,王燕波就开始忙着人员排班,可怎么排都还差一个自助设备引导员。

  正当她愁眉不展时,处于高中寒假期间的儿子自告奋勇说:“要不我去当志愿者吧,暑运的时候你们教过我如何使用自助设备。”就这样,人员问题解决了。值岗当天,王燕波早早带着儿子到站,开展岗前培训后才放心去忙自己的事。看着儿子淹没在人海,王燕波担忧之余,眼底尽是欣慰。

  春运期间,大家常常一忙就忘了吃饭。王燕波只要得闲,就替岗各个岗位,安排班组人员轮流吃饭,而她自己的午饭断断续续到下午两点多才吃完。她开玩笑道:“这是健康饮食,少食多餐。”

  夜幕降临,最后一趟列车作业完毕后,王燕波终于脱下已被汗水打湿的防护服,踏上去往医院的路。谁也想不到,每天最早到岗、最晚下班,照顾到每一个人的王燕波,其实一直都在单位和医院两头跑,照顾因肺炎住院已八十多岁高龄的父亲。

  在金温铁道公司,还有许许多多个“波姐”。她们提前到岗、延迟下班,加班加点只为确保旅客运输平安;她们舍弃小家,和同事们并肩作战,坚守一线,只为守护万家团圆。(完)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 无线充电开发较早 有线快充却后来居上

  • 美议员:特朗普与利比亚国民军司令的...

独家策划

推荐阅读
家彩网习近平在一带一路论坛开幕式上的演讲
2023-11-14
家彩网新浪2019国际学校择校巡展震撼来袭
2024-04-23
家彩网 全国各地哪里的早餐最好吃?
2023-07-10
家彩网中国留学生亲历电话诈骗
2023-10-05
家彩网别再节食了 原来吃肉也能减肥 看完你就懂了!
2023-11-13
家彩网王思聪与美女出行豪车接驾
2024-05-18
家彩网MH370最终搜寻报告:花1.6亿美元 仅找到3块残片
2023-09-23
家彩网证券法修订三审稿公开聚焦6大方面 两天获提千条意见
2023-08-01
家彩网 狐友国民校草张恩豪:上天不负努力的人
2024-04-24
家彩网ELLEMEN:日常羡慕——为什么成都人这么悠闲
2024-06-01
家彩网小长假朋友圈晒表攻略
2023-12-17
家彩网节后肠胃不舒服?这种情况不建议大量喝粥
2023-11-24
家彩网为#爱加餐# 为了中国孩子!
2024-02-09
家彩网英语听力考满分,真的全听懂了吗?网友:我不是学霸
2024-01-12
家彩网习近平出席第二届“一带一路”高峰论坛纪实
2023-12-02
家彩网刘诗诗产子!48岁新晋奶爸吴奇隆竟然做了这种准备?
2024-01-29
家彩网甜甜圈形激光空中造出长“光纤”
2024-03-22
家彩网2022“中国非遗年度人物”推选宣传活动启动
2023-11-29
家彩网欧文正名之战像极了詹姆斯
2024-04-21
家彩网格力2018年年报如约出炉 雷军10亿准备好了没?
2023-09-04
家彩网 什么情况?袁立晒“一家三口”合照疑升级当妈?
2024-05-13
家彩网 谢霆锋爸爸不甘寂寞 82岁谢贤密会电眼美女
2024-01-25
家彩网章子怡带女儿农场摘蔬果
2023-08-30
家彩网詹皇IG突然关注杜兰特 这就开始招募了?
2023-10-06
加载更多
家彩网地图